EXAM SETS & NUMBERS (PART 2: INTEGERS AND MODULAR ARITHMETIC), February 2nd, 2024, 3:00pm-5:00pm, Aletta Jacobshal 01 H22 - L8.

Write your name on every sheet of paper that you intend to hand in. Please provide **complete** arguments for each of your answers. This part of the exam consists of 2 questions. You can score up to 9 points for each question, and you obtain 2 points for free. In this way you will score in total between 2 and 20 points.

- (1) A question regarding division and gcd's: let $a, b \in \mathbb{Z}_{>0}$, with $a \ge b$, and write a = qb + r for integers $q \ge 1$ and $r \ge 0$.
 - (a) [3 points] Show that $2^a 1 = Q \cdot (2^b 1) + 2^r 1$ for some integer Q.
 - (b) [2 points] Prove that $gcd(2^a 1, 2^b 1) = gcd(2^b 1, 2^r 1)$.
 - (c) [2 points] Prove that $gcd(2^a 1, 2^b 1) = 2^{gcd(a,b)} 1$.
 - (d) [2 points] Prove that $(2^b 1) | (2^a 1) \iff b | a$.

(2) This problem considers, for integers $k \in \mathbb{Z}_{\geq 1}$, the numbers

$$b_k = (10^k + 5) / 15$$

(and some modular arithmetic).

- (a) [1 point] Compute b_1 and b_2 and b_3 and b_4 .
- (b) [2 points] Prove that $b_k \in \mathbb{Z}$, for every $k \in \mathbb{Z}_{\geq 1}$.
- (c) [1 point] Why is none of the integers b_k (for $k \ge 1$) divisible by 42?
- (d) [2 points] Show that $b_{k+1} = 10 \cdot b_k 3$, for every $k \in \mathbb{Z}_{\geq 1}$.
- (e) [1 point] Explain why the sequence $(b_k \mod n)_{k\geq 1}$ of elements in $\mathbb{Z}/n\mathbb{Z}$ is periodic, for any nonzero integer n.
- (f) [2 points] Today is 02 02 2024. Show that $15 \cdot b_{2022024} \equiv 6 \mod 11$ and that $b_{2022024} \equiv 7 \mod 11$.

If you are only retaking the numbers part this side is all you need to complete, otherwise please turn over for part 1 on sets and do that part on a DIFFERENT piece of paper.